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Abstract- This paper addresses the use of evolutionary 
algorithms in the design of electronic devices and 
circuits. In particular, the paper introduces the idea of 
evolutionary design of nanodevices, and illustrates it 
with the design of a resonant tunneling diode. A second 
experiment, this time using CMOS microdevices, 
illustrates the use of evolutionary algorithms for circuit 
design. The experiments were facilitated by an 
Evolutionary Design Tool developed around a parallel 
implementation of genetic algorithms (using PGAPack), 
and devicekircuit simulators (NEMO and SPICE). It is 
speculated that in the future devices and circuits may be 
simultaneously co-designed. 

1 Introduction 

1.1 Design of new devices and adaptive circuits 
The NASA goal to reduce payload in future space missions 
by avoiding on-off and artisanal task while increasing 
mission capability demands miniaturization. The 
miniaturization is obtained by applying nano-technologies 
which may result in devices such as application-specific 
integrated microinstruments and nano-satellites (satellites 
weighing only a few kilograms). While silicon micro device 
technology dominates the commercial microprocessor and 
memory market, the semiconductor heterostructure nano- 
devices allows to build miniature 2-D and 3-D sensors, 
actuators and intelligent microinstruments applied for 
example for light detection, light emission, and high-speed 
data transmission. 
The design of nanoelectronics still faces major challenges, 
both at device and circuit level. Although the production of 
these heterostructure nano-devices is enabled by the 
advancement of material growth techniques, the dimension 
reduction change the importance of some effects with 
respect to ordinary-sized components and some 
characteristics of the materials used introduce undesired 
effects must be compensated by new designs. The full 
experimental exploration of this design space is unfeasible 
and a reliable design tool is needed. Here is where a device 

simulator tool plays a paramount role. Even more, such a 
tool can be combined with an automated search tool, such 
as an evolutionary design tool, to assist in design; this 
largely enpowers the human designer. Beyond devices, 
circuits based on nanodevices have a great potential, 
especially in the area of fast switching logic; such designs 
are still a largely untouched area. 
Not only nanoelectronics, but microelectronics can also 
largely benefit from automation of design. As it is often 
said, analog design is more an art than a science, and the 
number of experts in the field is really smaller than the 
need, especially in the context of RF portable devices and 
mixed-signal circuits in systems-on-a-chip solutions. 
This paper presents a general tool based on evolutionary 
algorithms which facilitates evolutionary design of 
electronics, and illustrates the evolutionary design of a 
nanodevice and of a microelectronic circuit. 

1.2 Evolutionary algorithms in electronic design 
The idea behind evolutionary design of electronic devices 
and circuits is to employ a search/optimization algorithm 
that operates in the space of all possible deviceskircuits and 
determines a solution that meets the required specifications 
[I] ,  [2], [3]. Most experiments focused on evolutionary 
design of circuits and used either Genetic Algorithms (CA) 
or Genetic Programming (GP). Evolutionary design of 
nano-devices follows the same pattern as the evolutionary 
design of circuits, and a same evolutionary design tool may 
be used. This section illustrate the concept using the 
evolutionary design of circuits. 
The evolutionary/genetic search is tightly coupled with a 
coded representation for the circuits. Each circuit gets 
associated a “genetic code” or chromosome; the simplest 
representation of a chromosome is a binary string, a 
succession of Os and Is that encode a circuit. Synthesis is 
the search in the chromosome space for the solution 
corresponding to a circuit with a desired functional 
response. The genetic search follows a “generate and test” 
strategy: a population of candidate solutions is maintained 
at each time; the corresponding circuits are evaluated and 
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the best candidates are selected and reproduced in a 
subsequent generation, until a performance goal is reached. 
The main steps of evolutionary design are illustrated in 
Figure 1. First. a population of chromosomes is randomly 
generated. The chromosomes are converted into device 
models parameters (for device design) or circuit models (for 
design of circuits). Circuit responses are compared against 
specifications of a target response, and individuals are 
ranked based on how close they come to satisfying it. 
Preparing for a new iteration loop, a new population of 
individuals is generated from the pool of best individuals in 
the previous generation, some individual being taken as 
they were and some being modified by genetic operators, 
such as chromosome crossover and mutation. The process is 
repeated for many generations, and results in increasingly 
better individuals. The process is usually stopped after a 
number of generations, or when the closeness to the target 
response has reached a sufficient degree. One or several 
solutions may be found among the individuals of the last 
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Figure 1 : Evolutionary design of electronic devices and circuits 
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Figure 2: Sketch of a simple GA 

generation. 

2 An Evolutionary Design Tool 
A variety of Evolutionary Algorithms have been used 
successfully for evolution of circuits. A GA was chosen 
here because (a) previous work has demonstrated its 
efficiency in evolutionary circuit synthesis, (b) the 
mechanism is simple to understand and implement, (c) 
public domain software exists and saves development time, 
and (d) the focus was on the reconfigurable hardware (in the 
case of circuits) and not on the reconfiguration mechanism. 
It is likely that more intelligence can be inserted into the 
search mechanism. A simple block diagram of operations 
taking place in the GA is illustrated in Figure 2. 
An evolutionary design tool was built to facilitate 
experiments in simulated evolution. The tool can be used 
for synthesis and optimization of new devices, circuits, or 
architectures for reconfigurable hardware. These operations 
get performed before the mission and before any hardware 
gets fabricated. The tool can also be used in hardware- 
software co-design before the mission. In its current 
implementation the tool uses the public domain Parallel 
Genetic Algorithm package PGAPack and two simulators, 
the Nanoelectronic Modeling Tool (NEMO) and SPICE. An 
interface code links the CA with the simulator where 
potential designs are evaluated, while a graphical user 
interface facilitates the formulation of requirements and 
visualization of results. Each generation the GA produces a 
new population of binary chromosomes, which get 
converted into structural parameters that enter device 
models, or voltages in Spice netlists that describe candidate 
circuit designs. The devices specified by the parametric 
models are simulated by NEMO. The circuits expressed by 
netlists are simulated by a public domain version of SPICE 
3F5 as the circuit simulator. The tool was used on a 256- 
processor machine to simulate evolution. 
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Figure 4: Generation of the target I -  characteristic of a typical resonance tunneling diode. (a) The extrinsically 
measured 1-V (solid line) includes a series resistance and oscillations in the negative differential conductance 
region (0.32V-0.43V). The series resistance can be estimated from a series of devices with different cross 
sections. The intrinsic I-V is the target for the optimization (crosses). (b) Features that enter into the evaluation 
of the fitness of simulated data. Of particular interest are the peak and valley voltage and current and the slopes 
close to the peak and the valley. 

3 Evolution of nanoelectronic devices and 
circuits 

The term nanotechnology is broadly deferred to the 
synthesis and the integration of materials and process 
devices at the level of molecule. One of the key point of the 
nanotechnology is to exploit the material variations on an 
atomic scale which enable the quantum mechanical 
functionality of devices such as resonant tunneling diodes 
(RTDs), quantum well infrared photodetectors (QWIPs), 
quantum well lasers, and heterostructure field effect 
transistors (HFETs). The design and optimization of such 

I of 256 processors cf Caltech supercomputer (HP Exemplar) i 
I I 

Figure 3: An Evolutionary Design Tool 

heterostructure devices requires a detailed understanding of 
quantum mechanical electron transport. NEMO is a general- 

purpose quantum device design and analysis tool that 
addresses this problem. NEMO was developed as a general- 
purpose quantum mechanics-based 1 -D device design and 
analysis tool from 1993-97. The tool is available to US 
researchers by request on the NEMO web site [4]. NEMO is 
based on the non-equilibrium Green function approach, 
which allows a fundamentally sound inclusion of the 
required physics: bandstructure, scattering, and charge self- 
consistency. The theoretical approach is documented in 
references [ 5 ,  61 while some of the major simulation results 
are documented in references [7-91. 
Heterostructure device designs involve the choice of 
material compositions, layer thicknesses, and doping 
profiles. Material parameters such as band offsets. effective 
masses, dielectric constants etc. influence the device 
simulation results in addition to the structural design 
parameters. The full exploration of the design space using 
purely experimental techniques is unfeasible due to time 
and financial constraints. For example, it takes a well- 
equipped research laboratory approximately five working 
days [IO] for the growth, processing and testing of a 
particular resonant tunneling diode design. NEMO can 
provide quantitative [7-91 current voltage characteristics (I- 
Vk) within minutes to hours' of CPU time for a single set of 
device and material parameters. With this quantitative 

The actual CPU time needed for a single I-V simulation 
depends strongly on the choice of material systems, 
bandstructure models, temperature scattering models, and 
bias points. The individual I-V characteristics presented 
here take about 30 minutes to compute on a single 200MHz 
RlOOOO CPU of an SGI Origin. 
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Figure 5. Conduction band edge and doping profile of a typical resonant tunneling diode. The central device 
region is typically undoped. The low doped spacer thickness. the barrier thicknesses and the well thickness are 
labeled T,, T,, and T,. respectively. The low spacer doping and the central device doping are labeled N I  and N,, 
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respectively. These five parameters are varied. 

simulation capability the design parameter space can be 
explored expediently once an automated system for the 
design parameter variation is implemented. The architecture 
lends itself to the optimization of any parameters that enter 
a NEMO simulation. To evaluate how good a particular 
parameter set is, a fitness function must be developed. 

3.1 Simulation Target and Fitness Function 
In this work the RTD is used as a vehicle to study the 
effects of structural and doping variations on the electron 
transport. Current voltage characteristics of two devices that 
are part of a well-behaved test matrix of experimental data 
published in reference [SI are used as a design target. The 
raw I-V data (see the example in Figure 4) contains a 
contact series resistance and oscillations in the negative 
differential resistance (NDR). 
The fitness of the simulated data is measured against such 
target 1-V. There are four particular features that are 
explicitly evaluated for each simulated I-V: peak and valley 
current and voltage, and the slope close to the peak and the 
valley (see Figure 4b). Differences between the target and 
the simulation in these four features and the absolute and 
relative error for all simulated data points enter into the 
fitness function with a weighted average. The fitness values 
between 0 and 1 .  The electron transport simulations are 
based on a single band model, which incorporates effects of 
non-parabolic bands in the longitudinal and transverse 
directions relative to electron transport [6]. 

3.2 Set-up of Numerical Experiment 
In the numerical experiment described in Figure 5, five 
parameters (2 doping concentrations, N I ,  N,, and 3 
thicknesses, TI ,  T,, T,) are varied within the genetic 
algorithm in order to achieve the best fit to an experimental 
I-V curve. The simulation is started from a random 
population of 200 parameter sets. The doping population is 
logarithmically distributed around the nominal values by 
factors of 10 (NI . [ 1 ~ 1 0 ~ ~ , 1 x 1 0 ~ ~ ] ,  N, ~ [ 1 ~ 1 0 ~ ~ , 1 x 1 0 ~ ~ ] ) .  

The layer thickness population is uniformly distributed 
around the nominal value by 10 monolayers (T, [1,17] for 
device 1. TI [10.30] for device 2, T2,T3 [6,26]). In each 
generation 63 of the worst genes' are dropped out of the 
population and new genes are generated [ 111 from the rest 
by mutation and crossover. 

3.3 Simulation Results 
Two I-V's from slightly different structures serve as a target 
of the genetic algorithm optimization. Both structures were 
specified to the grower to have 16 monolayers (ml) of 
barriers (T2) and well (TI), no intentional doping in the 
central device (N,=lxlO" ~ m - ~ ) ,  N,=lxlO'* cm-3 doping in 
the low doping spacers, and 3 ~ 1 0 ' ~  cm-' in the high doping 
contacts (see Figure 5). The nominally only difference in 
the two devices is in the no-doping spacer length T, of 7 vs. 
20 ml. The simulation is started from the random 
populations as described in the previous section. The 
genetic algorithm converges for both 1-V's to the nominal 
structure values, well within the experimental uncertainty as 
shown in Figure 6. Again it is found that the well widths 
must be increased in the simulation by a few monolayers 
versus the nominal values to achieve the best agreement 
with experimental data [SI. Different relative weights will 
result in different "optimal" structures. 

3.4 Discussion 
This work is the first step to integrate NEMO within a high 
performance parallel computational environment. A desired 
curve can now be entered as the target of the simulation and 
the genetic algorithm is expected to obtain the optimal 

LAPACK is implemented with MPI where N-l of N 
processors are slaves to one master processor. The master 
takes care of the collection of data from the slaves. In a 
cluster of 64 CPU's we therefore renew only 63 genes in 
every generation. 
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Figure 6: Current voltage characteristics of two different InGaAsAnAIAs resonant tunneling diodes. The 
nominal structures have barrier (T2) and well (T,) thicknesses of 16 monolayers (ml), and doping a doping 
profile of 10” cmF3 (NI) and I O l 5  cm-3 (N2). The devices (a) and (b) differ nominally in their no-doping spacer 
thicknesses (T,) of 7 and 20 ml, respectively. The solid lines show experimental data published in reference [SI, 
where the noise in the valley current region was eliminated. The curves are labeled by the 5 parameters 
N 1 -N2-T 1 -T2-T3. 

parameter set. Future work will utilize this method to 
analyze the vast material and structure parameter space. It is 
planned to evaluate other optimization techniques such as 
simulated annealing and directive approaches as well. These 
optimization techniques will be made available within a 
graphical user interface which enables the selection of 
parameters to be varied, the setting of parameter ranges and 
the setting of optimization parameters, such as population 
sizes, and mutation and crossover rules. 

complicated circuit topology. Figure 7 illustrates an 
example of a PTA module consisting of 8 transistors and 24 
programmable switches. In this example the transistors P 1 - 
P4 are PMOS and N5-N8 are NMOS, and the switch based- 
connections are in sufficient number to allow a majority of 
meaningful topologies for the given transistors arrangement, 
and yet less than the total number of possible connections. 
Programming the switches On and Off determines a circuit 

4 Evolution of microelectronics 

This section introduces evolution of CMOS circuits based 
on Programmable Transistor Arrays, describing a design for 
hardware reconfigurable at transistor level. The PTA allows 
synthesis of analog, digital and mixed-signal circuits, being 
a more suitable platform for synthesis of analog circuitry 
than existing FPGAs or FPAAs, extending the work on 
evolving simulated circuits to evolving analog circuits 
directly on the chip. 

4.1 Programmable Transistor Array 

s7 

s3 

S I  1 
The idea of PTA as a platform for evolutionary 

microelectronics was introduced in [ 181, and expanded in 
[19]. The proposed PTA is an array of transistors 
interconnected by programmable switches. The status of the 
switches (On or Off) determines a circuit topology and 
consequently a specific response. Thus, the topology can be 
considered as a function of switch states, and can be 
represented by a binary sequence, such as “101 1 ...” , where 
by convention one can assign 1 to a switch turned On and 0 
to a switch turned Off. The PTA is a modular architecture, 
in which modules can be cascaded to determine a more 

s20 

Figure 7: Module of the Programmable 
Transistor Array 
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for which the effects of non-zero, finite impedance of the 
switches can be neglected in the first approximation. An 
example of a circuit drawn with this simplification is given 
in Figure 8. 
The left drawing illustrates the ideal circuit, the right 
drawing shows with dotted lines the finite resistance of open 
switches. A power supply, input signals and a biasing 
current source have been added. 
In this implementation four layers of transistors (two PMOS 
and two NMOS) were chosen, but this can be increased, for 
example to 6 or 8. On the “horizontal” direction the PTA 
architecture allows implementing bigger circuits by 
cascading PTA modules. A simple expansion would be by 

Figure 8: Schematic of a simple circuit implemented on 
the PTA module (with finite resistance of Off switches 

as dotted lines on the right figure) 

connecting two adjacent modules with a set of 
programmable connections. One such expansion with 24 
connections between two modules (and thus a total of 72 
programmable elements) was simulated. More details on the 
hardware aspects are discussed in [20]. 

4.2 !Evolution of a Gaussian Circuit 
The evolutionary synthesis approach illustrated in Figure 1 
was applied to the model of PTA illustrated in Figure 7. 
Evolution of a computational circuit was chosen to illustrate 
the approach. The goal of evolution was to synthesize a 
circuit which exhibits a Gaussian I-V characteristic. In a 
previous experiment [21] the circuit topology was fixed and 
the search search/optimization addressed transistor 
parameters (channel length and width); such evolution 
proved quite simple. The search for a topology turned out to 
be a much harder problem and several architectures were 
unsxcessfully attempted before the PTA was conceived. In 
the PTA case, the transistor parameters were kept fixed and 
the search was performed for the 24 binary parameters 
characterizing switches status. The specification of the 
fitness function played an important role in accelerating 
evolution. A simple Euclidian distance was found much less 

efficient than a fitness function based on a weighted 
combination of parameters that specify distances to some 
control points such as illustrated in Figure 9. The evolution 
was simulated on a Caltech supercomputer (HP-Exemplar), 
using the Evolutionary Design Tool. Successful evolution 
was demonstrated on multiple runs with populations 
between 50 and 512, evolving for 50 or 100 generations. 
The execution time depends on the above variables and on 
the number of processors used (usually 64 out of the 256 
available), averaging around 20 minutes (the same 
evolutions took about 2 days on a SUN SPARC 10). In 
some runs the solution circuit shown in Figure 8 (human 
designed) was rediscovered by evolution. 
Other solutions found include the circuits illustrated in 
Figure 1 1, which produce the first two responses in Figure 
10; some other responses from the same generation are 
illustrated in Figure 10 for comparison. 

4.3 Discussion 
It is interesting to analyze in more detail the unusual 
solutions found by evolution. Circuits like those illustrated 
in Figure 11 resulted from evolutionary similar (under 
certain test conditions) to that of the circuit shown in Figure 
$.Thicker dotted lines show connections that existed in the 
circuit in Figure 5, but are missing in the circuits in Figure 
1 1. As it is easy to observe these circuits are outside normal 
design practices, e.g., the transistors P2, P4 and N8 on the 
left circuit in Figure 11 and P2 have floating gates. The 
reality is that the switches have a big, but finite, resistance 
in the Off state (-MOhms or GOhms) and a non-zero 
resistancehmpedance in the On state (- tens of Ohms). One 

I I 
I 

0.9 t 

0.4 t 

Figure 9: Parameters used for the specification of the 
fitness function. Fitness =f(xl,. ..x7) 

observation from here is that while the eflects of non-perfect 
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Figure 10: Best circuit responses in a simulated evolution 

switches may be negligible in a first approximation for 
many digital circuits, such eflects may fundamentally aflect 
analog progratnmable circuits. 

5 Toward devicekircuit co-design? 

Current electronic design methodology is based on using 
components with pre-specified. well understood 
characteristics and combining them in arrangements that 
give the ensemble a desiredkarget functionality. Circuit 
solutions have been over the years collected in design 
handbook and the designer is many times in the position of 
calculating component values. running analysis and 
comparing results. etc. If one would put now designers to 
design with circuits with weird devices, say with 4 peaks of 

Figure 1 1 :  Circuits obtained by evolution; their design is 
unusual for common practices. 

the I-V characteristic they will be quite puzzled. But in fact 
it may well be that the most efficient implementation in 

silicon of a circuit would be by using 2 devices of 4-peak 
nature. Unlike human designers, evolution is not puzzled 
and can perfectly well design with wired devices. In fact the 
device characteristic and the circuit topology may be 
simultaneously determined for optimal. silicon 
implementation and system performance. Thus, it is 
possible that the future tools for automated design will 
perform simultaneous device design and circuit design. 

6 Conclusion 

An Evolutionary Design Tool was developed around 
PGAPack, with NEMO and SPICE as simulators, to 
facilitate evolutionary design of devices and circuits. A 
nanoelectronic device (resonant tunneling diode) with a 
desired current-voltage characteristic was obtained by 
evolutionary design, following an optimization of five 
structural parameters such as layer thickness and doping 
profiles. The convergence of the initially random 
population of devices to experimental specified device 
parameters is demonstrated for two different devices. A 
circuit implemented on a Programmable Transistor Array 
topology was also synthesized to provide a target response. 
The effect of non-ideal switches used in 
evolvable/reconfigurable analog circuits appears to play an 
important role in the final circuit design. 

Acknowledgements 

The research described in this paper was performed at the 
Center for lntegrated Space Microsystems, Jet Propulsion 
Laboratory, California lnstitute of Technology and was 
sponsored by the National Aeronautics and Space 
Administration. 

1277 



Bibliography 

[ I ]  Ning, Z-Q, Mouthaan, T. and Wallinga, H. SEAS: A 
Simulated Evolution Approach for Analog Circuit 
Synthesis. In Proceedings of the IEEE 1991 Custom 
Integrated Circuits Conference, pp 5.2.1-5.2.4. May 12-15, 
1991, San Diego, USA. IEEE Press: Piscataway. NJ. 
[2] De Garis, H. Evolvable Hardware: Genetic 

Programming of a Darwin Machine. In Proceedings of 
International Conference on Artificial Neural Networks 
and Genetic Algorithms. 1993, Innsbruck, Austria. Springer 
Verlag: Berlin. 
[3] Higuchi T. et al. Evolvable Hardware with Genetic 
Learning: A first step towards building a Darwin machine. 
In J-A. Meyer. H.L. Roitblat and S.W. Wilson (eds.), 
Proceedings of the 2nd International Conj2rence on the 
Simulation of Adaptive Behavior, pp 417-424. 1992. MIT 
Press: Cambridge. 
[4] NEMO, Nanoelectronic Modeling. in 
http://www.raytheon.comlrtislnemo/. 
[ 5 ]  Lake R. et al.. In Journal of Applied Physics. 81(12), 
pp. 7845. 1997. 
[6] R. Lake et al.. In Journal of Physical Static Solid, (b), 
204, pp. 354, 1997. 
[7] G. Klimeck et al.. In Applied Physic Letter. 67(17), pp. 
2539, 1995. 
[8] G. Klimeck et al..ln IEEE DRC, p. 92, 1997. 
[9] R. C. Bowen et al.. In Jorunal of Applied Physics, 81. 
pp. 3207, 1997. 
[ IO]  A. C. Seabaugh. Texas Instruments, private 
communication. 1997. 
[ I l l  D. Levine, http://www- 
unix.mcs.anl.gov/-levine/PGAPACWindex.html, Parallel 
Genetic Algorithm Library. 
[I21 J. N. Schulman. Second Workshop on 
Characterization, Future Opportunities and Applications of 
6. I,f Ill- V Semiconductors. Aug. 24-26. 1998. Naval 
Research Laboratory. Washington, DC, http://estd- 
www.nrl.navy.mil/code687O/code687O.html. 
[13; H. C. Liu. In Journal of Applied Physics. 64, pp. 4792, 
1988. 
[I41 H. C. Liu. In Journal of Applied Physics. 53, pp. 485. 
1988. 
[15] J. Koza. F.H. Bennett, D. Andre, and M.A Keane. 
Automated WYWIWYG design of both the topology and 
component values of analog electrical circuits using genetic 
programming. In Proceedings of Genetic Programming 
Conference, pp. 28-3 1 ,  1996. AAA1 Press. 
[I61 J. Lohn, J. and S. Colombano. Automated Analog 
Circuit Synthesis using a linear representation. In M. Sipper, 
D. Mange and A. Perez-Uribe (Eds) Evolvable Systems: 
From Biology to Hardware, pp. 125-133. ICES’98, 
Lausanne, Switzerland. Springer-Verlag, Lecture Notes in 
Computer Science 1478, Berlin. 

[I71 A. Thompson. An evolved circuit. intrinsic in silicon, 
entwined in physics. In T. Higuchi, M. lwata and W. Liu 
(eds.), First International Conference on Evolvable Systems, 
pp.390-405. Springer-Verlag, Lecture Notes in Computer 
Science 1259, 1996. 
[ 181 Stoica. A.. Reconfigurable Transistor Array for 

Evolvable Hardware, July 26, 1996. CaltechIJPL Novel 
Technology Report. 
[ 191 Stoica, A. and Salazar-Lazaro, C. Evolutionary 
technique for automated synthesis of electronic circuits, 
September 4, 1998. Caltech/JPL Novel Technology Report. 
[203 Stoica, A. Toward Evolvable Hardware Chips: 
Experiments with a Programmable Transistor Array. In 
Proceedings of the 7th International Conference on 
Microelectronics for Neural. Fuzzy and Bio-inspired 
Systems. Microneuro’99, Granada, Spain, April 7-9, 1999. 
[21] Stoica, A. On hardware evolvability and levels of 
granularity International Conference on Intelligent Systems 
and Semiotics, NlST Gaithersburg VA, September 1997. 

1278 

http://www.raytheon.comlrtislnemo
http://www
http://estd

